

Séries

A. Ramadane, Ph.D.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique et pour chaque $n\in\mathbb{N}$ soit $S_n=u_0+\cdots+u_n$ la somme de n+1 premiers termes de cette suite. Alors on a

Définition 2.2. 1) La suite $(S_n)_n$ est appelée série de terme général u_n , cette série sera notée $\sum u_n$ ou $\sum u_n$.

- 2) $S_n = \sum_{k=0}^n u_k$ est appelée la somme partielle d'ordre n de la série.
- 3) La série $\sum_{n} u_n$ est dite convergente si la suite $(S_n)_n$ est convergente, dans ce cas $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \sum_{k=0}^n u_k$, est alors appelée somme de la série $\sum_{n} u_n$, et désignée par ∞

$$\sum_{n=0}^{\infty} u_n \text{ ou } u_0 + \cdots + u_n + \cdots.$$

4) La série $\sum_{n} u_n$ est dite divergente si elle n'est pas convergente.

Remarque 2.1. 1) On peut avoir une suite $(u_n)_{n\geq n_0}$ qui n'est définie qu'à partir d'un certain indice $n_0 \geq 1$. Dans ce cas la série $\sum_n u_n$ est la série de terme général u_n , où $u_n := 0$ pour $0 \leq n \leq n_0 - 1$.

2) Soit $(u_n)_{n\geq n_0}$ une suite. Par abus de langage, et aussi suivant certains auteurs, on va se permettre d'utiliser la notation $\sum_{n=n_0}^{\infty} u_n$ pour désigner à la fois la série $\sum_{n=n_0}^{\infty} u_n$ et la somme $\sum_{n=n_0}^{\infty} u_n$,

si elle existe. Mais pour éviter toute confusion, les expressions : série $\sum_{n=n_0}^{\infty} u_n$, $\sum_{n=n_0}^{\infty} u_n$ converge

(ou diverge) ..., signifient qu'il s'agit d'une série, par contre les expressions : la somme $\sum_{n=n_0}^{\infty} u_n$,

 $\sum_{n=n_0}^{\infty} u_n$ égale à un scalaire (ou à l'infinie) ..., signifient qu'il s'agit d'une somme.

Exemples 2.1. 1) Soit $r \in \mathbb{R}$, la série géométrique de raison r est la série $\sum r^n$, on a $\sum r^n$ converge si, et seulement si -1 < r < 1. En effet, si $r \in]-1,1[$,

$$S_n = \sum_{k=0}^n r^k = \frac{1 - r^{n+1}}{1 - r} \Longrightarrow \sum_{k=0}^\infty r^k = \frac{1}{1 - r}.$$

Pour
$$r = 1$$
, $S_n = n + 1$, $donc \sum_{k=0}^{\infty} r^k = \infty$.
Pour $r \ge 1$, $S_n \ge n + 1$, $donc \sum_{k=0}^{\infty} r^k = \infty$.

Pour
$$r \ge 1$$
, $S_n \ge n+1$, $donc \sum_{k=0}^{\infty} r^k = \infty$.

Pour r = -1, $\sum_{i} r^{k}$ diverge. En effet,

$$S_{2n} = \frac{1 - (-1)^{2n+1}}{1 - (-1)} = 1$$

et

$$S_{2n+1} = \frac{1 - (-1)^{2n+2}}{1 - (-1)} = 0.$$

Pour
$$r < -1$$
, $\sum_{k} r^{k}$ diverge. En effet,

$$S_{2n} = \frac{1 - r^{2n+1}}{1 - r} \ donc \ \lim_{n \to \infty} S_{2n} = \infty$$

et

$$S_{2n+1} = \frac{1 - r^{2n+2}}{1 - r} \ donc \ \lim_{n \to \infty} S_{2n+1} = -\infty.$$

2) La série

$$\sum_{n} \frac{1}{n(n+1)}$$

est convergente, car pour tout entier $n \geq 1$,

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

Donc

$$S_n = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n} - \frac{1}{n+1})$$
$$= 1 - \frac{1}{n+1}.$$

Ainsi,

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

Définition 2.3. La somme de deux séries $\sum_n u_n$ et $\sum_n v_n$, notée $\sum_n u_n + \sum_n v_n$, est la série

$$\sum_{n} u_n + v_n.$$

Pour tout scalaire $\lambda \in \mathbb{C}$, le produit de λ et la série $\sum_{n} u_n$, notée $\lambda \cdot \sum_{n} u_n$, est la série

$$\sum_{n} \lambda u_n.$$

Proposition 2.2. $Si \sum_{n} u_n$ et $\sum_{n} v_n$ sont deux séries convergentes et $si \lambda$ et β sont deux scalaires alors la série

$$\lambda \cdot \sum_{n} u_n + \beta \cdot \sum_{n} v_n$$

est convergente et on a

$$\lambda \cdot \sum_{n=0}^{\infty} u_n + \beta \cdot \sum_{n=0}^{\infty} v_n = \sum_{n=0}^{\infty} \lambda u_n + \beta v_n.$$

Proposition 2.3. Une série $\sum_{n} u_n$ est convergente si, et seulement si elle vérifie le critère de Cauchy suivant :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} : \ \forall m > n \ge N, \ |\sum_{k=n+1}^{m} u_k| < \varepsilon.$$

Démonstration. Découle du critère de Cauchy pour la suite $(\sum_{k=0}^{n} u_k)_n$. \square

Proposition 2.4. Si une série $\sum_{n} u_n$ converge, alors $\lim_{n\to\infty} u_n = 0$.

Démonstration.

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \left(\sum_{k=0}^n u_k - \sum_{k=0}^{n-1} u_k \right)$$

$$= \lim_{n \to \infty} \sum_{k=0}^n u_k - \lim_{n \to \infty} \sum_{k=0}^{n-1} u_k$$

$$= \sum_{k=0}^{\infty} u_k - \sum_{k=0}^{\infty} u_k = 0. \square$$

Attention 2.1. La réciproque de la proposition 2.4 n'est pas vraie en général. Voici deux exemples :

1) Soit la série

$$\sum_{n=1}^{\infty} \ln(\frac{n+1}{n}).$$

2) Un exemple remarquable est donné par la série harmonique

$$\sum_{n} \frac{1}{n}$$
.

Le terme général de cette série est 1/n qui converge vers zéro. Mais on a

$$S_{2n} - S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

$$\geq \underbrace{\frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n}}_{n \text{ termes}}$$

$$= n \cdot \frac{1}{2n} = \frac{1}{2},$$

donc la série harmonique ne vérifie pas le critère de Cauchy donc elle est divergente.

3. Séries numériques à termes positifs.

Dans se paragraphe on s'intéresse aux séries à termes généraux positifs, c'est à dire les séries $\sum u_n$ telles que, pour tout $n \in \mathbb{N}$, $u_n \geq 0$.

Proposition 2.5. Une série $\sum_{n} u_n$ à termes positifs est convergente si, et seulement si elle est bornée.

Démonstration. La suite $(\sum_{k=0}^n u_k)_n$ est croissante, donc elle converge si, et seulement si elle est bornée. \square

Proposition 2.6. Soient $\sum_{n} u_n$ et $\sum_{n} v_n$ deux séries à termes positifs, supposons de plus que pour tout $n \in \mathbb{N}$, $u_n \leq v_n$, alors :

- 1) si la série $\sum_{n} v_n$ converge la série $\sum_{n} u_n$ converge et on a $\sum_{k=0}^{\infty} u_k \leq \sum_{k=0}^{\infty} v_k$.
- 2) si la série $\sum u_n$ diverge la série $\sum v_n$ diverge.

Démonstration. Si $\sum_{n} v_n$ converge, alors pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} u_k \leq \sum_{k=0}^{n} v_k \leq \sum_{k=0}^{\infty} v_k < \infty$.

D'où
$$\sum_{k=0}^{\infty} u_k \leq \sum_{k=0}^{\infty} v_k$$
. \square

Exemples 2.1. Etudions la nature de la série

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\frac{1}{n^2} \le \frac{1}{(n-1) \cdot n},$$

On a pour tout entier $n \ge 2$, $\frac{1}{n^2} \le \frac{1}{(n-1) \cdot n},$ or $\sum_{n=2}^{\infty} \frac{1}{(n-1)n}$ est convergente, d'où $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge.